Human diaphragm efficiency estimated as power output relative to activation increases with hypercapnic hyperpnea.
نویسندگان
چکیده
Hyperpnea with exercise or hypercapnia causes phasic contraction of abdominal muscles, potentially lengthening the diaphragm at end expiration and unloading it during inspiration. Muscle efficiency in vitro varies with load, fiber length, and precontraction stretch. To examine whether these properties of muscle contractility determine diaphragm efficiency (Eff(di)) in vivo, we measured Eff(di) in six healthy adults breathing air and during progressive hypercapnia at three levels of end-tidal Pco(2) with mean values of 48 (SD 2), 55 (SD 2), and 61 (SD 1) Torr. Eff(di) was estimated as the ratio of diaphragm power (Wdi) [the product of mean inspiratory transdiaphragmatic pressure, diaphragm volume change (DeltaVdi) measured fluoroscopically, and 1/inspiratory duration (Ti(-1))] to activation [root mean square values of inspiratory diaphragm electromyogram (RMS(di)) measured from esophageal electrodes]. At maximum hypercapnea relative to breathing air, 1) gastric pressure and diaphragm length at end expiration (Pg(ee) and Ldi(ee), respectively) increased 1.4 (SD 0.2) and 1.13 (SD 0.08) times, (P < 0.01 for both); 2) inspiratory change (Delta) in Pg decreased from 4.5 (SD 2.2) to -7.7 (SD 3.8) cmH(2)O (P < 0.001); 3) DeltaVdi.Ti(-1), Wdi, RMS(di), and Eff(di) increased 2.7 (SD 0.6), 4.9 (SD 1.8), 2.6 (SD 0.9), and 1.8 (SD 0.3) times, respectively (P < 0.01 for all); and 4) net and inspiratory Wdi were not different (P = 0.4). Eff(di) was predicted from Ldi(ee) (P < 0.001), Pg(ee) (P < 0.001), DeltaPg.Ti(-1) (P = 0.03), and DeltaPg (P = 0.04) (r(2) = 0.52) (multivariate regression analysis). We conclude that, with hypercapnic hyperpnea, 1) approximately 47% of the maximum increase of Wdi was attributable to increased Eff(di); 2) Eff(di) increased due to preinspiratory lengthening and inspiratory unloading of the diaphragm, consistent with muscle behavior in vitro; 3) passive recoil of the diaphragm did not contribute to inspiratory Wdi or Eff(di); and 4) phasic abdominal muscle activity with hyperpnea reduces diaphragm energy consumption.
منابع مشابه
Diaphragm efficiency estimated as power output relative to activation in chronic obstructive pulmonary disease.
Muscle efficiency increases with fiber length and decreases with load. Diaphragm efficiency (Eff(di)) in healthy humans, measured as power output (Wdi) relative to the root mean square of diaphragm electromyogram (RMS(di)), increases with hyperpnea due to phasic activity of abdominal muscles acting to increase diaphragm length at end expiration (L(di ee)) and decrease inspiratory load. In chron...
متن کاملThe effects of inspiratory muscle training on plasma interleukin-6 concentration during cycling exercise and a volitional mimic of the exercise hyperpnea.
It is unknown whether the respiratory muscles contribute to exercise-induced increases in plasma interleukin-6 (IL-6) concentration, if this is related to diaphragm fatigue, and whether inspiratory muscle training (IMT) attenuates the plasma IL-6 response to whole body exercise and/or a volitional mimic of the exercise hyperpnea. Twelve healthy males were divided equally into an IMT or placebo ...
متن کاملNew Maximum Power Point Tracking Technique Based on P&O Method
In the most described maximum power point tracking (MPPT) methods in the literatures, the optimal operation point of the photovoltaic (PV) systems is estimated by linear approximations. However, these approximations can lead to less optimal operating conditions and significantly reduce the performances of the PV systems. This paper proposes a new approach to determine the maximum power point (M...
متن کاملA Parametric Study on Exergy and Exergoeconomic Analysis of a Diesel Engine based Combined Heat and Power System
This paper presents exergy and exergoeconomic analysis and parametric study of a Diesel engine based Combined Heat and Power (CHP) system that produces 277 kW of electricity and 282 kW of heat. For this purpose, the CHP system is first thermodynamically analyzed through energy and exergy. Then cost balances and auxiliary equations are applied to subsystems. The exergoeconomic analysis is based ...
متن کاملMuscle coordination limits efficiency and power output of human limb movement under a wide range of mechanical demands.
This study investigated the influence of cycle frequency and workload on muscle coordination and the ensuing relationship with mechanical efficiency and power output of human limb movement. Eleven trained cyclists completed an array of cycle frequency (cadence)-power output conditions while excitation from 10 leg muscles and power output were recorded. Mechanical efficiency was maximized at inc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 107 5 شماره
صفحات -
تاریخ انتشار 2009